Al in daily Academic work - practical Workshop

1. Welcome & Introduction (15 minutes)

1. Workshop Objectives

- o Introduce the current landscape of AI tools for academic use.
- Show practical ways to integrate AI into teaching and research workflows.
- Discuss ethical and best-practice guidelines.

2. Context & Relevance

- Why Al is integral to academic work (teaching, research, and coding/data analysis).
- o Current trends in Al adoption in education and research.

3. Icebreaker

- Quick show of hands: who has used ChatGPT, Claude, or any other AI tool?
- Ask participants to share one thing they hope to learn by the end of the workshop.

2. Overview of AI Platforms (30 minutes)

1. ChatGPT, Claude, Gemini, Llama, and Grok

- Key Features: Language models, generative capabilities, summarization, Q&A, coding assistance, etc.
- Pros & Cons: Accuracy, limitations, model updates, speed, cost, and data privacy concerns.
- Live Demonstration: Show brief examples (e.g., generating a short summary, quick content outline).

2. Microsoft Copilot & the Future of Agentic AI

- What is Microsoft Copilot? Integration within the Office suite, code generation, multi-app connectivity.
- Agentic AI: AI "agents" that handle tasks across multiple applications (emails, files, data).
- Discussion: Implications for academic work, research collaboration, and coding tasks.

3. Hands-On Mini Exercise (Optional if time permits)

 Have participants open one AI tool (e.g., ChatGPT or Claude) and ask it an academic question, such as "Explain the difference between quantitative and qualitative research."

3. Al for Teaching & Lecturing (45 minutes)

3.1 Content Creation

1. Lecture Material

- o Using AI to generate lecture outlines, slide content, or lecture scripts.
- o Practical tips for prompt engineering to ensure relevant, accurate content.

2. Assignments & Quizzes

- o Crafting multiple-choice questions or short-answer prompts using Al.
- Verifying accuracy and avoiding biased or vague questions.

3.2 Verifying Student Work & Academic Integrity

1. Detecting Al-Generated Content

- o Overview of current tools (e.g., Turnitin's AI detection, GPTZero).
- o Reliability, false positives, and the evolving nature of detection methods.

2. Blending Student & Al Contributions

- o Setting clear guidelines on how students can use AI as a resource.
- o Encouraging reflection and originality.

3.3 Multimedia Use (Graphics & Video)

1. Al-Generated Visuals

- o Tools like DALL·E, Midjourney, or Stable Diffusion for quick diagram creation.
- o Ensuring images are relevant, clearly labeled, and appropriate.

2. Video Generation

- o Al video tools for creating micro-lectures or animated tutorials.
- o Demonstration of a short Al-generated video sample.

Interactive Task:

• **Group Exercise**: In small groups, use an AI tool to create a short lecture outline, one or two quiz questions, and a supporting graphic. Share with the workshop.

4. Al for Research (Total: 60 minutes)

4.1 Student Research (30 minutes)

1. Ethical Use & Preventing Abuse

o Policies and guidelines for dissertations and theses.

o Proper citation of AI tools and acknowledging assistance.

2. Data Verification & Quality Checks

- Using AI to analyze data, but verifying correctness.
- o Recognizing AI "hallucinations" or fabricated references.

3. Research Methodology & Interpretation

- o Prompting AI to suggest suitable research methods.
- o Validating Al-driven suggestions with academic standards.

4. Finding & Including Sources

- Using AI to propose relevant academic papers (caution regarding false references).
- Best practices for fact-checking references.

5. Integrating Conclusions & Checking Technical Accuracy

- o Summarizing findings with Al.
- o Double-checking calculations, formulas, or code snippets.

Practical Demonstration:

- Show how to prompt an AI tool to assist with an example thesis topic:
 - "Suggest a literature review structure on [Topic]."
 - o "Generate key research questions based on [Topic]."

4.2 Academic & Professional Research (15 minutes)

1. Marking & Evaluating Papers

- o Al-assisted grading: possibilities, limitations, and ethical concerns.
- Using AI to highlight potential writing issues or structural flaws.

2. Writing Research Reports

- o Drafting sections (Introduction, Methodology, Discussion) with Al's help.
- Ensuring compliance with academic style guides (APA, MLA, Chicago, etc.).

3. Evaluating Sources & Gaps in Research

- o Using AI to generate critical summaries of articles or datasets.
- Identifying contradictory findings and open areas for future investigation.

4. Case Study:

 End-to-end example of integrating AI at each stage of a research paper's lifecycle.

4.3 AI in Coding & Statistical Applications (15 minutes)

1. Coding with Al Assistance

- o Using AI to generate or troubleshoot scripts in R, Python, or Stata.
- Common prompt structures: "Write a function that does X," "Optimize this code," or "Debug this error."

2. Data Analysis Tools

- o Getting help with EViews or SPSS commands and interpreting outputs.
- Example prompts: "Explain how to run a linear regression in SPSS," "Generate ARIMA model code in R."

3. Interpreting Statistical Results

- Using AI to clarify regression outputs, confidence intervals, p-values, or timeseries forecasts.
- Validating that the Al's interpretations align with standard econometric or statistical practices.

4. Practical Demonstration

- Show how to ask an AI model to generate a simple R/Stata script for data cleaning or descriptive statistics.
- Demonstrate Al's capability (and limitations) in debugging code or explaining model outputs.

Interactive Task:

Individual Exercise:

- Ask participants to either generate or debug a short piece of code (in R, Python, or Stata).
- o Have the Al interpret the results of a basic regression or statistical test.
- o Compare the Al's responses to actual references/documentation for accuracy.

5. Al Projects & Practical Application (15-20 minutes)

1. Showcasing Al Projects

- Examples of real-world or classroom-based AI projects using ChatGPT, Claude, etc.
- Demonstrate how tools can be combined (e.g., Al for data extraction, then code generation).

2. Guided Brainstorm

 Participants propose potential AI-based class projects, research experiments, or coding collaborations.

3. Building a Culture of Experimentation

 Encouraging safe-to-fail pilots, iterative improvement, and exploration of new AI features.

6. Conclusion & Q&A (10-15 minutes)

1. Recap

- o Key takeaways for integrating AI into teaching, research, and coding workflows.
- o Ethical considerations, data privacy, and the importance of critical thinking.

2. Resources & Next Steps

- List of recommended AI tools, references, and tutorials for coding and data analysis (e.g., DataCamp, Stack Overflow's AI assist).
- o Invitation to continue discussions or schedule follow-up training.

3. Open Q&A

- o Final opportunity for questions or clarifications.
- Encourage sharing experiences and forming peer-support groups postworkshop.

Workshop Preparation Checklist

• Technical Setup:

- o Stable Wi-Fi, participants pre-registered on Al tools (ChatGPT, Claude, etc.).
- Have sample data/scripts ready for coding demos.

• Accounts & Tools:

- o Ensure participants can access R/Python/Stata or have a web-based alternative.
- o Check if Al plugins (e.g., ChatGPT Code Interpreter) are enabled if relevant.

Slides & Handouts:

- Quick-reference materials on prompt engineering, coding examples, and best practices.
- o Printed instructions or cheat sheets for basic Al coding prompts.

• Sample Datasets:

 Provide a simple dataset for participants to run code on (CSV or Excel) to see how AI can help.

Interactivity:

- Encourage hands-on tasks for both teaching material generation and coding exercises.
- o Provide live feedback on participants' prompts and AI outputs.

Timing at a Glance (3 Hours Total)

- 1. Welcome & Introduction (15 min)
- 2. **Overview of AI Platforms** (30 min)
- 3. Al for Teaching & Lecturing (45 min)
- 4. Al for Research (60 min)
 - o 4.1 Student Research (30 min)
 - o 4.2 Academic & Professional Research (15 min)
 - o 4.3 Al in Coding & Statistical Applications (15 min)
- 5. Al Projects & Practical Application (15–20 min)
- 6. **Conclusion & Q&A** (10–15 min)